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CHAPTER I

INTRODUCTION

I. Introduction and Summary

- " In this dissertation we-e 4stochastic piocesses which arise out

of a single GI/G/l queueing system. w.-ei- oncerned here. with the

weak convergence of each process conditioned on an event whose probability

is converging to zero as time becomes large.,_.

The basic processes we are going to discuss are {W n 0),

(Q(t): t t 0) and (W(t): t - 0), where W represents th6 time which
n

customer numb n must wait before being serviced, O(t) is the number

of customers present in the system at time t, and W(t) denotes the

workload of the server at time t.

The setup for our problems is the classical one. in a single GI/G/l

queueing system, customer number 0 arrives at time t 0 = 0, finds a free

server, and experiences a service time v O . The nth customer arrives at

time t and experiences a service time v . Let the int, rarrival timesn n

tn - t = u n 1. We assume the sequence of random vectors

((V 1 ' U): n I) 's independent and identically distributed (i.i.d.).
-l -l

Let E(Un ) = X 1 and EIv n ) = PI , where 0 < X, i < o. In addition, we

shall ziways assume that E(u 2 + E(v 2 < - and that the deterministic
n n

system in which both ti and v are degenerate is excluded. The nazural

measure of congestion for this system is the traffic intensity p = X/P.

In our ctudy we shall consider systems in which p is greater than, equal

to or less than unity.



If we define n = n- un then W can be defined recursivelyn n

by the relations

wo 0

W n+1  [W n +n+ln

Now fn n > 1) is a sequence of i.i.d, random vg-riables with E(9 ]

22 2
and E{ -1 =G , 0 < a < . Foro the random walk (Sn: n a 0) by 3ettilng

I rn
S = 0 and S = +0.. + n n >- 1. It is easy to show by induction that

W = max[S a - S :k 0, i n), r ; 0

Next, let N b-' the hitting time of the set (-o x] by the randomx

walk:

N inf(n > 0: S n x)x n

where the infimum of the eirpLy set is taken to be +m. Set N = No . In

the queueing context 9 is the, number of customers served in the first

busy period.

What sort of limiting results would -e hope to provide for (W n > 0)

and the other processes? One would like to bave results of convergence in

distribution. For example, does there exist a random variable S+ whose

distribution is proper, s,,ch that

lin P(S x Il < N < P(S# )

for each x Z 0 when P > 1 (i.e., i > 0)? We observe that W = Sn

on (N > n). Thus S + can be thought of as a limit law for the waiting

-2-
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time process in the first busy !-.rioI cf a general single server queue

with P > 1.

Let [.] be the greatest integer in x. Define the random function

X Ly

' Xn(t) = [nt] 0 <t I,

i where C1 is a constant to be specified later. Then, we would like to

~know whether one can, obtain a functional central limit theorem as

x x n  N< <) => X

where X is certain random function. The symbol t means weak converg-

ence Jn the Skorohod topology in D[O,lj M D; see BILLINGSLY." (1968),

p. 137, for furtier discussion of this result.

The limiting random functio,, X that we shall encounter in our study

can be identified in terms of Brownian motion B. The limit is either

Brownian meander or Brownian excursion depending upon whether P = I or

P3

Brownian meander, W+, is first ieccenized in BELKLN (1972), Theorem

3.. Let (B(t) t "2- 0) be the stand&rdized Brownian motion. Let

TI = sup(t C [0 1]: B(t) 0). Set 41  1 - T1 • Then

w+(t) = jB(t1 + ta 1)l / 4 _< t < 1

It is r continuous, non-homogeneous Markov process and has Iransition

density given ky

-3-



(1.1) P(W+(t ) dy) =- p (O,,), t, y)dy

32
= t 2 y exp - ) INI Y ) dy

for 0 < t I and y > O; for O<s<t 1, and x, y > 0

(1.2) P{W+(t) dy ! W+(s) = x)

= p+(s,x,t,y)dy = g(t-s,x,y) t dy

where g(t,x,y) = (2)t) -  [exp(- 2t-)_ exp( t) and2t "2t "" an

INI(x) = (2-- exp(- -H )du, x 0
0

For the derivation of this transition density, see BELKIN (1972), p. 61.

Note that for x 0,

x

P(W+() x) = R(y)dy

0

where R(x) 5 x exp(- x2/2), x > 0, is the density cf the Raleigh distri-

bution.

Another proces,, which we wiI± be interested in is the Brownian excur-

sion, W+. Let T 2 inf(t > 1: W(t) = 0). Set 2 = - and

- 1 2 2 2 5t!

Brownian cxcursion is also a continuous, non-homogeneous Markov

j! process witn transition densitj given by

-4-
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(1.)+t) dy) = p(O,O,t,y)dy

S(1.4) P (Wo( 0(

22 y FVp y dy

for O<t<I and y>O; for 0 <s<t<l and x, y>O

(1.5) P(Wo(t) c dy Wo(s) = x)

3 y exp(- y}-
po(s,x,ty)dy = g(t-s, xy )( ) 2 dy

see ITO-McKEAN (1965), P. 76,for this resulL. Clearly, the distribution

of W + (0) and W+ (l) are degenerate at 0.
00

In (hapt r 2 we shall show that,if P / 1, the finite-,Umeisional

distribut'ors (f.d.d.'r) of (Xn I n < N < m) converge weakly to those of

I-W
WO"

Because of the degeneracy at point t 1, th, limiting behavior

CW I n < N < -) is not revealed. When P> 1, the existence of

lim (W, n < N <

will be established and it, distribution function will be exhibited.

This is carried out in Chapter 3.

In Chapter 4 we restrict our attention to the case that P 1.

We establish results for the workload process, W(t), and the queue-

l.nth process, Q 4. Results for cprtain multiple channel queues are

also given.

I--



To close this section, we make a comment regardi"g the notation in

this thesis. The basic notation adhered throughout the paper is devel-

oped in Chapter 1 and the first sections of Chapters 2 and 4. Bracket ,

S]i, refers to the bibliography.

2. Related Work

The history of conditioned limit results for various stochastic pr.--

cesses does not extend over the past twenty years. The existence of con-

tioned limit distributions in both discrete and continuous time Markov

chains is extensively discussed by MANDEL (1959, 1960), DARROCH and SENETA

(1965, 1967), SENETA and VERi-JONES (1967).

Results on conditioned random walks have been obtained by DWASS

and KARLIN (1963), LIGGETT (1968), DALEY (1969), BELKIN (1970, 1972),

KAIGH (1974), and IGLEHART (1974a,b).

For the M/G/1 queueing system KYPRIANOU (1971) firsL established

the existence of

where Tfa) = inf(t : W(t) = 0, W(O) = a) for a , 0. It is further

demonstrated by KENNEDY (1974) that as time becomes large W(t), suitably

scaled and normed, converges to Brownian excursion or Brownian meander

depending upon whether P / 1 or P = 1.

The first conditioned limit result for the GI/GA queue is contained

in IGLEHART (1974a j. In (17] he established the following result.

j -6-



(1.6) THEOREM. [IGLEHART (1974a), Theorem 3.41. If u1 = O, 0 < a2 < ,

Ef It113) <, and t is nonlattice or-integer-valued with span 1, then

(Xn I N > n) = W+ .

The third moment condition was later removed, see DURRETT (1976).

When i < 0, which corresponds to a stable queue, the random walk

[Sn: n > 0) is strongly autracted to the origin and the limit results in

this case do not depend only on i and 02 but on the entire distribu-

tion of t,. Assuming that the distribution of i satisfies the follow-

ing coaditions:

(1.7) - < ;

(1.8) 0(s) = E exp(s.E ) converges for real se[O,a),
for some a > 0;

(1.9) e(s) attains its infimum at a point T, 0 < i < a,

where E,(T) = T < 1 and et(T) = 0;

and

(1.10) if is lattice, then P( l = 0) > 0,

IGLEHART (1974b) established the following result:

(1.11) THEOREM. [IGLEHART (1974b), Theorem 2.3'. If conditions (7.7) -

(1.10) hold and u > 0, then

(1.12) ln E~exp(-uW )IN > n) - exp~ E - LE(exp(-uS*
nfl o T+u n nn

f(u)

-7-



The distribution function of the limit random variable S* is

later given by VERAVERBEKE and TEUGELS (1975). Let UCU, X) =n l P(Sn S

x, N > n),n and

x

(1.13) V(x) = I - e + U( , x-,7)e -  dy.

Then under the same conditions, (1.7) - (1.10), it iq shown in [30],p. 283,

that

(1.14) lim P(W n  xIN > n) = exp[- fn PL', > 0 ° v(x).
n-*oo n- n n

Acknowledgment: We close this introductory chapter by a-now±czging a

heavy debt to the two above-mentioned papers of IGLEHART (1974a, b) on

conditioned limit theorems for random walks

.- 8



CHAP-,ER 2

LIMITING DIFFUSION FOR RANDOM WALKS WITH DRIFT

CONDITIONED TO STAY POSITIVE

SI. Introduction and Probability Space

Let Q k k t 11 be a sequence of independent, identically distributed

k 2 2

(i.i.d.) random variables with EftI} = l and E{g I - )i2 = a2 ,

0 < 02 < m. Form the random walk (S : n a 0) by setting S = 0 and

S n = tI + +  t n ' n -, 1. Let Nx be the hitting time of the set

(--,x) by the random walk:

N = inffn > 0: S n x]x n

where the infiimum of the empty set is taken to be +-. Set N = No.

Throughout this chapter, we shall assume that the distribution of

satisfies the following conditions

!(2.1) t1 / 0;

(2.2) 6(s) = E exp(g ) converges either for real s[O,a),

if < 0, or for real 4C(-a,0], if L 1 > 0, for some a > 0;

(2.3) v(b) attains its infimum either at a point T) if L1 < 0,

or at a point -T. if 1 > O where 0 < T < a, and

=e(+-_) =<I and 6(t- T) =0;

and

(2.4) is nonlattice

Define the random function X by

-9-



_[S nt]

where o= "(t)/ y, 0 < c < -, and Ix] is the greatest integer in x.

Our goal in this chapter i3 to prove that the finite-dimensional

discributions (f.d.d.'s) of the random function Xn, conditioned on

n < N < -, co-;erge weakly to those of Brownien excursion, WO .

To be more specific, we assume that (9k: k t 1) are the coordinate

functions defined on the product space

n=1

where R (-m, ), R is the a-field of Borel sets of R, and 1% is

the common prohability measure of the tk's. If A n = (r < N < ]), then

we let (A Ann !F, P ) be the trace of (,Q, 5, P) on A where An rn Y

(A n n F, F e Y) and Pn(A) = P(A) P(A n) for A e An n Y.

Our result has an application to queueing theory, as well as the

obvious interpretation as the fortune of a gambler or insurance company

prior to ruin, If W is the waiting time of nth customer in a general

single server queue, then the 5's in this application are differences

of service and interarrival times. In this context N is the number

of customers served in the first busy period. Observe that W = S~n n

on (N > n). Thus conditioning on (n < N < o) will yield limit theorems

for the waiting time process, given that the first busy period has not

ended but will end eventually,

We close this section by noting a well known fact that P(N < ) = I

when i < 0 [see CHUNG (1968) p. 244]. In this case we can write

(N > n) instead of (n < N < m).



2. Some Asymptotic Results

Conditions (2.1) through (2.4) imply that as n -4 ,

(2.5) P(S n  0) (2gn)-, n( )-, i f < 0,

and

(2.6) ps 0) (21cn)-' i(f) > .

These results are contained in BAHADUR and RAO (1960); also see IGLEHART

(1974b).

Our analysis relies heavily on two lemmas, which appear in IGLEHART

(1974b).

(2.7) LEMMA[IGLEHART (1974b), Lemma 2.1]. Let

F dn~ n  = exp E bnZ
n=o [ n=l

3

for 1/5 5 1. If b = 0(n - 2) then

3

d O(n " ' ) as n- co.n

(2.8) LEMMA [IGLEHART (1974b), Lemma 2.2]. Let c n d > 0, c n cn- ,• n* n n

0 -I n-I
t d = d < -, and d =0( ). If a = oc d., then
n=o n - n - n j~o n-j .j

a cdn "  as n-* oo
n

Let fn = P(N = n) and rn = P(n < N < -). Our first result yields

the asymptotic behavior of the sequence of (f n > 1) and (r n ).

-aI-
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(2.9) THEoREM. If conditions (2.1) - (2.4) hold, then as n -+

(2.10) f A

(2.11) r A
n2 (21c) tarQY

where exp-- if rn > 0 ,
SA n=ln

(T -1) exp[ E P(S> i > if < a.nln

Proof. When Kl < 0, the asymptotic relation (2.11) is proved in

IGLFART (1974b), Theorem 2.1. Because f = rn - rn' it follows

immediately that given 6 > 0, there exists no such that for all

n > no0 f n nn

r o(C) f n!5 1  [ + o)
(i-1i) naL \n-l/ ] 711l~ n L "~

where f = (21) (0.t) 1A. Since e is arbitrary, we obtain (2.10) for

: I<0.

To obtain (2.10) and (2.11) for > 0, we use an identity from

random walk theory [see CHUNG (1968), p. 256-258],

- n  exp(itSn)dP exp exp~itS)dP]
n=l (N:n n= n bn

Pn: (sO)

-12-



for [,51 < 1. Setting t = 0 yields

00 0

(2.12) 1 - f = exp - In 0
n=l In=

Differentiating both sides of (212) with respect to ,j yields

(2.13) nf exp 1 2i SO}7sn]
n n n n

where 1< . Set a n =nfyn, c = P( S ! 0), and

n n
dn n exp ) n P(S n :r O0)/n5

n --o I =

- ( -1,

Then from (2.13), we see that a =- c d.. Now c ~(2nan) ( )
n Jo n-j J n

because of (2.6). So b - n c = O(n- ). Also,

E n E n n

d = exp - P(Sn" 0] < =o.

n=o In=l

Hence we can apply Lemmas 2.7 and 2.8 to obtain (2.10).

Now for any C > 0, there exists n0  such that for all n 2 not

(2.14) ( f - -f g f ( ) -

n2  n2

Hence

i -13-



+o _

n7 r -)-n+k n)n k--n+l

0y

(10 + £)f 3 '" •
k=l

Letting n - we obtain

(2.15) lim sup n2 11n < (1+ )f( -I -1)n-w fn"

Similarly, using the first inequality of (2.14), we have

(2.16) lir inf n2 y f > (I -f- -1
n- c n

-- i

Combining (2.15) and (2.16), we obtain (2.11), since C is arbitrary.

Our problem is closely related to the asymptotic analysis of the

distribucion function of Mn, where M = max(Sk: 0 < k < n). This

subject has been treated extensively by BOROVKOV (1965). The following

two theorems are immediate results of BOROVKOV (1965), Theorem 7.

Denote M = sup(Sk: k > 0).

(2.17) THEOREM. _If conditions (2.1)- (2.4) hold, then for x > G as

in

(2.18) P x exp(xLYTVG) A1  for p> 0

ani

-14-
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(2.19) p x -P x exp -=T-) .= A-

for pI< 0.

The limits in (2.18) and (2.19) are uniform for x in compact sets.

(2.20) THEOREM. If conditions (2.1) - (2.4) hold, then for x > 0 as

n --

7 n R x) A

Pn< N - < 001 exp~)xa -~ -xk n CT( -I

(2.21) 
ir ( -

for p > 0)

and

PNJ > fli -Y exp\xas/n)-~ -

(2.22)

for p, < 0.

The limits in (2.21) and (2.22) are ,niform for x in compact sets.

Recall that R(x) = x exp(-x 2/2), x > 0, is the density of the

Raleigh .istribution. Theore-m 2.17 enables us to understdnd the asymp-

totic behavior of Sn, conditioned on IN > n), as n -

(2.23) THEOREM . If conditions (2.1) - (2.4) hold, then for x > 0 as

n4

(224 P -- x, N > n - , if p > 0,=--. .,(2. 24) n /

and

-15-



(S N R(x)
(2.25) P >exp(-xc t/' , ifl < .

) it UTN>n-

The limits ii (2.24) and (2.25) are uniform for x in compact sets.

Proof. We shall prove (2.24) first. Recall that S = W on (N > n).

So if we can show (2.24) with S replaced by Wn, the result will be

established. A simple path decomposition yield3

W~( P11 Ng =j n
(2.26) P n x, N > n x, N

Using the fact that N is an optional random variable and that W = 0,

we can rewrite (2.2u) as

(2.27) p-Lr< X, N > n} = P fk=l fP nk ! x

For n I and x > 0 let

h(n,x) =nT- exp(-x/) nI; ~

For e > 0 and a fixed 0 < n < [n(l - c)] we can write, because of
0

(2.27),

-16-



(2.28) nY n exp(-xctWi7  P W n  x N > n

h(nx) - yk h(n-k, x(r' (-k -nYe' f
---- x) ,nI n)n

k1n-k ~n-k n

n [n(l-E)] -- n

=E 'x rd - E - nn'

k=1 kz.n +1 k=[n(l-e) ]+i

n(n, x) - K - J - K - ne-ne -x  f nn n n n

Now

(2.29)rlim h(n,x) = RA A-1

and

(2.30) ].ii I A" In = k=l

because of (2.18). Since R(x) = xe /2 is bounded, relation (2.18)

also implies that h(n,x) G G (0 < G < ') for all n I 1 and x 0. Using

this fact, we can conclude chat

. (2.31) Jn G G C k=91 k
k=n +1 0

0

3

Because of (2.10), 1 fn !5 Hn 2(0 < H < f for n Z! 1. Thus we have

-n7



-4VI -M-- tr ----- ---

n-

GH ni -3 (n-k) -

GH(1 ~ Z -;- 1)z
S k

k~l

SGH(1-e) n (1 + n e+lInn)

Finally,

(2.33) li r n M/' f = (

because of (2.10) and being positive. Using (2.28) -(2.33), and

selecting n 0sufficiently large we can make

0 0

ynY e3'/ 11P n !5x, N > n~-( Y'f,~ A

arbitrarily small for large n. Sincc

f ~k f
A x~~n=1 n k=1

by virtue of (2.12), this completes the proof of (2.24). Because (2.24)

is a direct consequence of (2.18), that the limit in (2.24) is uniform for

x in compact sets follows immediately from Theorem 2.17.



To establish (2.25) for the case i1 < 0, we can write from (2.26)

(2.34) P x: N>n = P1 > x - fkP - > xCAn-o~- k=1 (/

[ L n _> -1 PI X1

f k [ { >x -P >x

k~lk M~ M

+ PI >>

For x 0 and n >1, let

g(njx) = nY exp(xr- < x -P M < xj

CL( /n Mn-n

Then from (2.19)

(2.35) = r n' gn,xj = R 5 A-1.

Multiplying both sides of (2.34) by ny - n exp(xaz ,/n), we have

-19-



W
(2.36) nlY n exp(xat/n) Pt-16%> x, N > n

n-1
=-9(n, x) + ~ - k*g(n-k, x'/7-K)

k=1

- nY" exp(xcW ) P * > x P(N > n).

To estimate the last term appearing in (2.36), let K be the nontrivial

solution of O(h) = 1 Then for x > 0 as n -)o

(2.37) P( M > xi) -D exp(-xwi )

where D is a positive constant whose precise value need not concern

us; see IGLEHART (1972), Lemma 1 for this result. Hence,

(2.38) lir n exp(xr) >x P(N > n) = 0n - + o / n

because of (2.11), (2.37), and K > T > 0. The summation term in (2.36)

can be broken into three parts and be taken care of in the same manner as

we have done in (2.28) - (2.32). And we can conclude this time that

(2.39) rn xp )Nlira WY xp xcT,/ n) >  x , N > n
n -- ooC

k=1 k I I

The power series E n P > O has T > 1 as radiut of converg-
CO -n

ence and E PS > 0) is finite; see VERAVERBEKE and TEUGELSenc n nl n "n

(1975), p. 281, for a discussion of this result. Therefore, from (2.12)

we have

-20-



(2.40) l + E T - f ( -I) exp n P(Sn > 0n=l n n=ln

Combining (2.39) and (2.40) we obtain (2.25). Uniform convergence is a

direct consequjece of Theorem 2.17. This completes our proof.

For x 0 and n 1 1, we define

()= (n ) ' Y PLL> xp;yd

(2.41) F (x f ndy, N> n exp(;Ya/,n

(o'xj (

where the "-" sign is taken for V1 > 0, and the "+" sig4 is taken

for I < 0.

(2.42) COROLLARY. For all x t 0,

e

the Raleigh distribution.

Proof. Integration by parts yields

FnIX) = (nl) Yn > x, N > exp(-xctstn)

+ n-r n P I n y N > n x p ( -y c ) d y

if > 0. Hence, by Theorem 2.23, we have

22o(1) y exp -"dy
(o'x!

-21-



If 1 < 0, integration by parts will yield

Fn(x) = (nn) T41 tN> n) - PnL> x N>n

+ n-n (Ixo] pln > y, N> n e x p ( y o ) d y

= 0(1) - y exp - dy
(o xj

because of (2.11) and Theorem 2.23

The next ..sult is needed in proving the convergence of high dimen-

sional distributions.

(2.43) THEOREM. Assume conditions (2.1) - (2.4) are satisfied. For

x, y > 0 as n -*

(2.44) P x - y, N_,-> n}

n expf(x y)omjn-) g(l, y, x).

where g(t, y,x) (2 ItY 4 (Y e

The convergence in (2.44) is uniform for x in compact sets,

Proof. Let Mn = max(S 0 k n) and NI - sup (-Skk 2 0). ifn-Sk =up-k~k 0.I

we set

r-2



I
II

an(Y, x) = y, Ny%/n
n Ln

then

a y, x) = < y, y -n~ [ &/ n

Using the simple identity P(A n B) = P(A) + P(A fl B) - P(8), we can write

a yx) P < y + P M  y, < y-x < (-t (2.45) aayrx P } 4-P{- QAy,

+J -K

n n n

But we have

(2.46) I = y + o(i) exp(-yU'Er )
_F nT

P -<Y)- [f )c G (yrn- [+01

(2.47) J = P. exp\yx%,n 2 o(I)]

(2.48) K = ((2yn)O L £i

see BOROVKOV (1965), Theorem 7, for the above results. Combining (2.45)

to (2.48), we obtain (2.44). Uniform convergence also followq directly

from BOROVKOV (1965), Theorem 7.

3. The Main Limit Theorems

Having obtained various asymptotic results in the last section, we

are now able to establish the main result of this chapter. We shall show

the convergence of one-dimensional distribution of (Xn I n < N < -), then

extend the result to higher dimensions. First, we state R standard result
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in the theory of weak convergence used by IGLEHART (1974a), Lemma (2.1.8).

Alternatively, see BELKIN (1972), p. 54, or BILLINGSLEY (1968), Theorem

5.5.

(2.49) LEMMA. Let (pi : n 1) be a sequence of finite measures on

the Borel sets of R (-,+ co). Suppose p n>p, Ifinite. If. (f r

n ! 1) is a sequence of uniformly _______, Borel measurable functions

converging uniformly on compact sets to an everywhere bounded continuous

limit f, then

lrn fn(X)g (dx) = f(x) L(dx)
4rP0 B n nB

f or B C 5R provided viObB) = 0.

The following two results are the main objective of this chapter.

(2.50) THEOREM. If conditions (2.1) - (2.4)_are satisfied, then for all

xaO and O!5t-l as n-c

(2.51) (X (t) I n <N < ~w+(t)

Proof. The claim (2.51) is trivial for t =0. Next, consider t =1,

and take 0 < a < b. We want to estimate

(2.52) P a <-a b n <~ N <0

which is equal to



(2.53) P a < n S b

= r P nEdx, N > n < (N o n (a I] /

If i > 0, then (2.52) is furthermore equal to

(2.54) (nt)i,-n. exp(.xo).plS n -Cdx, N > n)(ab] /n

n exp(xaw'-) P(N~xo, < J

= ¢ ! F (dx) . n exp(xarIiD PN }

(tn 3) r n (a b] naC 0

Now

(2.55) n exp(xrlh P[Nxx a/- < co = n exp(xat ) PfM- > xw/i'

- Do n exp[-xa(K-T/n ].

Combining (2.11), (2.52) - (2.55), and using Corollary 2.42 and Lemma

2.49, we conclude that for I > 0

(2.56) lim P a < ! b n < N <oo = 0.

If i < 0, then (2.52) is less than or equal to

r PVQn> a N>nn CK/-

which is asymptotically as n - equal to

2)1 exp(-xa-rV, R(x). (r "l -l)A-

because of (2.11.) and (2.25). This shows that (2.56) also holds when

< 0.



Next, consider 0 < t < I and take 0 < a < b. For all choices of

a, b, and t it will suffice to show that

(2.57) lir Pa < I b n<N<

I f =Pfa < W;(t) :5 b)If gl >  of

(2,58) 
P a 

b n <N

is equal to r- P jSnt] edx, N>%Fn Nn I e, N > [n-] px/ n-[nt] < N < co]
(a.b 

-

[7tt(t-t)n 3 11r b]in

f PISat] , N> [nt]

• n(1t) "( t) exp (xa n)p {n. t] < < .

Appealing to Corollary 2.42, we see that (2.57) equals further to

I 1 C n(l-texp(xar,/)Pfn-[nt] <
(2.59) [nt]n~r ( t)7(l, _t F

n ( (a b]

" Because of (2.21),

R(x) ( -. x
(2.60) Pfn-[nt)<N <A n(lt)

(260)( _7 exp(-xayDvrn)(' - )

Combining (2.11), (2.41), (2.59), (2.60) and using Lemma 2.49, we obtain
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T -7 17 --"M w"

2
2  ,

_ _______ 1 e ij •~ x~- ) A I

2 x

2 x e x p ( "  d xt1op (°' o, t',) dx
(a, b] [2gt3(-t) 3]t[  (a b] 0

which proves (2.57) for 1 > 0.

Similarly, if I < 0, the term (2.58) becomes

S E[nt] b N>n

which is equal to

(2.61) 3 1 ( (dx n(l-t) exp(-xat/ )P'jN xq/j >n_[nt]n (rn( t)(l-t) (b][nt]()

rrn (ab]

Using the same argument, we see(2.61) converge as n - to

p +(o, o, t, x)dx
(a b]

This completes the proof.

Finally, we can plunge into the proof of convergence of the f.d.d.'s.

(2.62) THEOREM. If conditions (2.1) - (2.4) hold then for k > 1

and 0 t < t 2 < ... < tk 1 as n

(2.63) (x (tl), .. , (t n < N < ) , Wot

n n nk0k
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Proof. Theorem (2.50) takes care of the case k 1. Now suppose (2.63)

is true for k = m-i, we show next that it can be extended to k = m.

We begin by writing

i -1~~ xmtl  m  S[nt ] S[n -2

S [t ] S[t] )

(2.64) ...- : x I n < N <

'C X S

= n- m <,~~ ' *-- ~t
n 2n

X (e [nt][ nnt I

05 [n[n]-]-[nt_ 1]

SP m n- [nt] < N <

X' Xm (S[nt I S[nt m31 I

r S S P n. dYm_1 In <N t<j

0+ 0+ 0/-a

y - -S ntm-[nt dm-1 I }

Sdy N > [nt 0 [nt]

Pnn[nt ] ] -ym C/'n 1 qI

P y M rn n-'Ent < N-yain <
m

S , S ' A yM1I

OF 0+ C Vi -28-



From (2,60) we see that the quotient term in the last product Term is

asymptotically equal to

(2.65) (12tm Tiy ~m' 1 7jf-tl) -(tmtm )[lrymY)ar..IYm-1' Ym1

Let 2(1-t m-1
(y ) = {[nt " dx, N [nt

n m YrFrtn-n -

TY[ntm]-[ntm-i ] expl+ (X-Y .)aT%/n•

Integration by parts yields

y

(2.66) lim Gn(y m) = g( - tml m-l' x)dx,
0

because of Theorem (2.43). Finally, by our induction assumption

(S Slim P f'nl' S[nt m-1]<n N<

(2.67) ! rn .. ) - xm-1I

0 04n 4-
Si xM-1 +.

.. "'i Po+(O Olt )PO(tl'y Y ' P, ( tY'
0 0 ll 0 1 t '2  0tm-2' Ym' t m ' m-

dym_l... dy1

Combining (2.64) - (2.67) and using Lemma (gi.49) twice, we obtain

I-29-



~nt ][nt] In
lrn P x , "., X n<N <.

S~~. Sm Si S~ p(O 0' t ,y + t)p

1-t 3 rn exp -1(1-t ) )
M-1 M4 - t)

Idy 1 dy 2  1. In dm

Relation (2.63) follows immediately, which completes the proof.
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CHAPTER 3

CONDITIONED ! 1MIT THEOREMS FOR RANDOM WALKS

:'.TH POSITIVE DRIFT

1. Introduction

Let (Xk: k 1) be a sequence of independent random variables, iden-

tic:tlly distributed with common distribution F(x) on (-o, +co). Let

2 2 2
E!XI3 = i and E(X1  9I = ry 0 < r< co. Form the random walk

(S n: n 0) by setting So = 0 and Sn = XI + "-" + X n n > 1. Next

let N be the hitting time of the set (-o0, x] by the random walk
x

N = inf (n > O: S n< x3x n

where the infimum of the empty set is taken to be +w. Set N = N0 .

When Ll1 > 0, the random walk is drifting to +w and asymptotically

the conditioning N > n plays no role: the random walk does not feel

the barrier at the origin. In fact, we have

lim P -xI N >n J 0, x>O0

because of Theorem 2.23 and P(N = co) > 0 [see CHUNG (1968), proof of

Theorem 8.4.4]. In this case it is more meaningful to examine, instead,

the limit distribution of Sn, conditioned on (n < N < c). From Theorem

2.50 we have, for 0 tg t :5 1,

tim P 29 x I n < N < P(W+(t) X)
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But P(W+(1) : x) = 1 and this result does not tell us the limiting be-

havior of S n because normalization by n kills it. It suggests that

we need not normalize S by n' to get convergence to a non-degeneraten

limit.

The main result in Section 2 is to show (Sn I n < N < oo) converges

to a non-degenerate random variable S#, and to identify the distribution

function of S#. As we have pointed out before, this problem is closely

related to the asymptotic analysis of the distribution function of Mn,

where Mn = max(Sk: 0 k < n). We shall get the asymptotic result of

P(Mn < x) in Section 3.

2. Limit Theorem For (S I n < N <co)

Throughout this chapter, we shall assume that the distribution of

X1 satisfies the following conditionF:

(3.1) 0 < :i 003 ;

(3.2) e(s) E exp(sX1 ) converges for real s e (-a,O], for some

a>0;

(3.3) O(s) attains its infimum at a point --r, 0 < T < a, where

i( - < l, and 0 T) 0;

and

(3.4) if X is lattice, then P[X 0) > 0

The proof of the main result in this section requires us to intro-

duce the so-called associated random variable to X1; see FELLER (1971),

p. 406, for a discussion of this concept.
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The distribution function F(x) of the associated random variable

X is given by
X

T(x)= exp(-Ky) F(dy)

Let (2 2 3 R ) be a sequence of i.i.d, copies of X," Form the

associated random walk (S n > 0) by setting S 0 and S
0n n

1 ... + n > 1. Also, define the stopping time N accordingly. If

t() = E exp(C I ) is the moment generating function of XI, then

S= G(z - K). Note that 0'(-K) < 0 implies that the associated

random walk ( : n > 0) has a negative drift. Furthermore, the distribu-n

tion function 9 of i satisfies conditions (1.7) - (1.10). Hence, we

have from (1.14)

(3.5) lim PR ! X R > n) = c - V^(x)
rrc 

n

where c is a constant and (x) is a known function solely depending

on x; see Ch. 1, Sec. 2, for this result.

To get the limit result for (Sn I n < N < co), we first estimate

P(Sn < x, n<N<co) for x >0.

(3.6) P(Sn  x. n < N < Xc]} = oJ P(S n dy, N > n)PY(N <c}

- .. I ( y + Yn)F(dY)- -F(dy n) P(M" > yl +'*+y n= (O'x](nl+ " n""

where n =((Y''Y ): £l y > 0, ir k < n) * Exploiting the concept

whr 3 i
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"l" Ic (Yi + *°+Yn) PCIC >y 1+ *+Yn exp[K(y 1 +.--+y )]F(dy 1 )...F(dyn)

M - > Y KY p''- -''

P(s ng xnn < N < no } <

( > e]P[M- dyN n]
P[M-> y~eKYPA^ C dy N > n)

(o CO i

It follows from (3.6) and Lemma 2.49 that

- Ky
P{M ->y)e V(dy)

(3.7) lim PSn xin < N<) E(0] H(x)

(oo ] P(M->Y)eKY (dY)

It is easy to see that H(x) is nondecrealing and right continuous with

H(0) = 0, H(+w) = 1. Thus H(x) is a distribution function.

Hence, we arrive at our main result in this section:

(3.8) THEOREM. If conditions (3.1) - (3.4) are satisfied, then as n -o i

(3.9) (sn I n<N<) S#

where 4s a non-degenerate random variable.
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One application of this result is in terms of the waiting time of the

nth customer, Wn, in a general single server queue with traffic intensity

p > 1. In this case, W = S on the set (N > n] and N is the numbern n

of customers served in the first busy period. Thus S can be thought

of as the limiting waiting time given that the first busy period has not

ended yet but will eventually terminate.

For illustration, we take as example X, v- u, where v(u) has

an exponential distribution with parameter '(X). This corresponds to

M/M/l queue. If P =X/V, we need to assume P > I in order to insure

~ l > 0. Then, it is well-knoun that

(3.10) P(M- > y) = P 1 exp(- Ky)

see, for example, FELLER (1971), p. 199. Because of (3.5), (3.7),

(3.10) and V()= c- , we have

H(x) = c (x) ,

which is the distribution function of lim(S ̂ > n). One t a, calculate
n-+o n

its Laplace transform and find

(3.11) E exp(US#) # (X- )(U+X)2

)(2u + X ,

see IOLEHART (1974b), p. 750, for details.

3. The Asymptotic Analysis of the Distribution Function of Mn

Following the exposition of the last section, we shall go on to estab-

lish the following
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(3.12) THEOREM. If conditions (3.1) - (3.4) are satisfied, then for all

x>O0

xG(\Fk0

(3.13) P (M : x) G( x )  k_ -  (n (2 ) ex 2pL. skkJ o

as n -> o, where G(x) is a known function solely depending on x.

Proof. For x > 0 let Gn (x) = P(Mn 9 x) and Un(X) = P(Sn < x, N > n),

n : 1. Employing the same argument that is used in deriving (3.7), we

obtain

u (x) ox eKY (S dy, N > n)n ( ] PSn dy

P{nKx fix
= <(n ! x, N > n)e - K P(S n : y, 9 > n)e dy.

(o xj

The last equality is due to integration by parts. VERAVERBEKE and TEUGELS

(1975) have shown that

PLS n x, N>n) ~-- =n~ 2n/

as n -. . Hence

(3.14) LI -(X)-

n (2r,) 2Ct

where Vkx) - V(xeX - K(o V(y)edy. Form the generating function

for fun(x): n > 0:

U(XX) = 1 n(X) n

n=l
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-I

Then we have the following Spitze. Jentity

0n0 
n  }

(3.15) G n) = + U(ex)pJ * ex P{S 0
n=1 I

(see [30], p. 280). Differentiating with respect to A5 yields

CO nC-On [n= -n PS } n

,niGx)[= P(S
n=1l 

=.

(3.16) F , +U(:-n + n•~~ ~ ~~ . .{nO}ntlU X)] + E-n7 Un) n

n=l n=1

As we had in (2.6),

(3.17) P(S S (2-n', as n -c .

If we set

so0
(3.18) a (x) = -n'p'S < On W I- , x

then, beceuse of (3.14), (3.17) and Lemma 2.8,

a! Wnx a(x -  ri s n ,

-Jwhere a =x U -

a(x) =(2)-(U)-1 k If , x) Thus

(3.19) a (x) t n'fn (r + U"v ,X) + V(x)]
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by virtue of (3.14). Let

(3,20) dA 5n n]j --P(J
n~o Ln=1

Then, because of (3.17) and Lemma 2.7,

3

(3.21) d = ru(n-2), as n - on*

And it is obvious that

00

(3.22) F d < co

n=o

Combining (3.16), (3.18), and (3.20), we have

00

, flY- Gn( X).2 n -'x + 117- Du x),

I~ ~n=o nT n n x £ d /n £ [ n X T n n X]nn=o nn=o

Because of (3.19) - (3.22) and Lemma 2.8, we obtain

y-nG() (2nn)- (c-r G(x) * e p P(Sk P g)

-1
where G(x) I + U ̂ Y , x) + V(x). This completes our proof.

-38,-



CHAPTER 4

CONDITIONED FUNCTIONAL CENTRAL LIMIT THEOREMS FOR QUEUES

WITH TRAFFIC INTENSITY EQUAL TO UNITY

1. Introduction

We shall first study a general single-server queueing system with

traffic intensity, p, equal to 1, and then excend the result to

multiple-channel queues. The GI/G/l queueing system is constructed

in Section 1 of Ch. 1. We shall follow the exposition there.

Section 2 of this chapter is concerned with studying the behavior

of the workload process, W(t), conditioned on the fact that the first

busy period has not ended by time t, as t becomes large. A func-

tional central limit theorem in D[O, 1] is our goal. In Section 3,

the queue-length process, Q(t), is treated.

In Section 4 we shall extend the results for the W and W(t)n

processes to a variation of Gl/G/I queueing system, where there are

several initial customers instead of only one at time t = 0. This simple

generalization enables us to establish results for our multiple-channel

queueing systems, which is the subject of Section 5.

2. The Workload Process (W(t): t a 0)

For t a 0 let AMt = n+l on t < t , where as previously
n n+l

defined in Section 1 of Ch. 1, t = u + ... +u , n 1, and to = O.n 1 n' 0

For convenience let A(O-) = 0. Clearly, (A(t): t > 0) is a renewal

process which represents the number of arrivals in the interval [0, t].
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Set :(t) = v 0 + + A(t) - t. The workload process, W(t), is

represented as

(4.1) W(t) = 1(t) - inf(I(6): 0:5 A s t)

with W(O+) = V0 > 0. Define the random function

(t) ut) t .

Yu i-fu
r U

Next, define a stopping time L = inf(t > 0: W(t) = 0), where L repre-

sents the length of the first busy period. Our goal in this section is

Sto obz.in a central limit theorem for (YuIL > u) as u -* . The first

step toward this goal is to understand the asymptotic behavior of

d- P(L > u).

(4.2) LEMMA. For u > 0, P(L > u] - c(X u) - i as u -+ , where c is

a constant.

Proof:

(4.3) (L > u] = (W(t) > 0, 0 < t s_ u}

= fw(t I ) > o,w(t 2) > 0,...,W(A(u)-1) > 0, W(u)>O

= (S1 > O,...,SA(u).l > O SA(u)+ tA(u)-u > 0) ,
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and

(4.4) (S i > 0: 1 -i _< A(u)) C {L < u) C (S. > 0: 1< i -5 A(u)-l)

It has been shown that

(4.5) P(S i > 0: 1 < i 5 A(u)) C(xU), as u () "

see IGLEHART (1974a), Lemma 4.2. The desired result follows from (4.4)

and (4.5).

The proof of the main theorem requires a standard result in the

theory of weak convergence. Let (X n 1) and (Y n > 1) be two

sequences of random elements of a separable metrix space such that X

and Yn have a common domain. Let p(x,y) = sup( x() - y(6)I : 0 6 1)

for any x, y C D[0, 1].

(4.6) THEOREM. If Xn >X and p(Xn, Yn) -n 0, then Yn >X.

See BILLINGSLEY (1968), Theorem 4.1, for this result.

Let

zu(t) = A , 0 5 t 1
a(Xu)

2
(4.7) LEMMA. If p = 1, and 0 < a < , then As u -c

(z u  I L > u) = W+ .
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Proof. It follows from Lemma 4.2 and IGLEHART (1974a), Lemma 4.3,that,

if 0 < t1 < t 2 < ... < tk < 1,

(Z u(t Il,...,Z u(t k )I > u) => (W+(t 1 ,...,W +(tkd))

Thus we have the convergence of f.d.d.'s of (ZuIL > u). It remains to

show that the family ((Z uL > u): u > 0) is tight. Since Z (0) = o,

it suffices to show that, for every C > 0,

(4.8) lim lim P (8) e L > u) = 0,
6Io u-* u

where wD (6) = sup ( lx(s)-x(t)t: 5, t [0, ], Is-tt < 8); see

BILLINGSLEY (1968), Theorem 15.5, for this result.

We have from (4.4)

0 :5 P(w()_c IL >u)

P{N > A(u)-l) p(% (e) e e I N > A(u)UU

IG EHART (1974a), Lemma 4.6, has shown that

lim Trm P(w (e) IS > A(u)-) = 0.
6 o u4 u
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Hence (4.8) follows immediately. This completes the proof.

Now we are able to establish our main result.

(4.9) THEOREM. If p = 1, 0 < 1 < oo and Ef UL ) < o, then as u -

(Y. I L > u) =: W+ .

Proof. On the set (L > u),

A(u)-l

W(u) vi-u = SA(u) +(tA(u) U).
i=o

Let p(x,y) = sup(IX(t) - y(t)j: 0 :5 t 1) for any x, .y in DCO, 1].

Then

-z) 1 sup(ItA(uZ) - ut: 0 5 5 1)

5 - 1u)( - _ 5 1l

-= sup~uA(u ): :5

a(Xu) k

W Thus P )(Y Z > e L > U) is less than or equal to
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sup uk>C rxi

- (A(u)+I l

:Sd- E('+ 1f ecr(xu), 3(

=d EJA~u)+l? Plul > akut
U ~

The last equality holds because of Wald's identity. It follows from

4 Lemma 4.2 that

(4.10) P[P(YU) zu) > C I L > u)

= l + o(u)] a- EfA(u)+l uU >eC(Xu)).
u

The elementary renewal theorem says that

E(A(u))
(4.11) lim - X

u

Our assumption Efu ) < oo implies that

(4.12) 1rm t3P(u > t) = 0
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Combining (4.10)- (4,12), we have

(4.13) lim Pjp(Y., Z.)> L>u = 0
"00

Finally, the result follows immediately from (4.6), (4.7), and (4.13).

Now let us suppose that at time t there are rQ(t) - 1]+  cus-

tomers waiting in the queue and the server is serving some customer, say

jth customer, whose residual service time v' is part of vj. Then,

we can rewrite the workload process, W(t), in the following way:

A(t)

w(t) = v + v,
i=A(t)-[Q(t) -I]+

i.e., the sum of [Q(t) - 1]+  complete service times and a residual

service time.

Let V(t) = W(t) - v'. Since the difference of V(t) and W(t)

is dominated by max(vk: 0 < k : A(t)), it is easy to see that V(t),

properly normalized, has the same weak limit (see the proof of Theorem

4.9). For 0 : t ! I, let V (t) = V(ut)/i;(Xu) .
u

2 ~ 33
(4.14) THEOREM. _ = 1, o < o <- and E(Lu+jV ) <co, then as

U 0

(Vu1L > u) w+
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S3. The Queue-Length Process fQ(t): t j! 0)

We now turn to the queue-length process, (Q(t): t 0), which

represents the number of customers in the system at time t, including

the one being served. This process is a random step function on the

positive half line with jumps of + 1. We may define Q(t) formally

by introducing the departure epochs (dn:i

Fn

t + v + Wn if n 1_ ,

d = n t o

n 0 if n = .

I

WenwtTnt he queuerlengt process, Q(t): t 0)O, which rcrstenme fdpr

maxnrno : dn-<t], if d at t ,

D(t) -
0 , if d I > t.

Clearly Q(t) =A(t) -D(t), where of course A(t) and D(t) are highly

dependent. We observe that A(t) D(t) for all t 0 and

(4.15) [N> D(t)) D ( N> A(t)'J, for all t -e 0.

Let us consider another renewal process (D (t): t > 0).

Dt)= max(nati: v 1+...+V n_5t), if v I :S t)

dIt =4

0 if v1 > t.

NoLT deat uI'; -c DI(t) and they are equal if there are no idle periods
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in (O,t]. We observe that the renewal process (D'(t): t z 0) has

the same rate as (A(t): t ! 0) because p = 1. Using the same argument

as in IGLEHART (1973), Lemma 4.2, we have

(4.16) LEMMA. P(N> D'(u))- c(pu) -4 as u- 00, where c is a constant.

The precise value of c is not our concern here; see FELLER (1971),

p. 415, for its value.

(4.17) COROLLARY. P(N > D(u)) - c(Pu) - i as u -+ C.

Using relation (4.15), (4.17) and the same proo± employed in

IGLEHART (1973), Lemma (4.2), we have the following two results.

(4.18) LEMMA. If p = 1, 0 < 2 <c and E(u 3 + v3 ) < a, then as

t-

V~t) N >D(t))

2 3__ Eu 3
1 ) , -__

(4.19) COROLLARY. If p 1, 0 < o < co, and E(u3+v] < co, then for

x>O

-~lim P V(t) 5 x IN> D(t) 0

Corollary 4.19 enables us to show that, as time goes to infinity, the

queue length will also become large, conditioned on the event that the

first busy period never ends. For the unconditioned case, a similar
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result is first proved in WHITT (1968), pp. 149-151.

(4.20) LEMMA. For any M > 0,

lin P(Q(t) :5 M N > A(t)) o

Proof. Let (At. A l n a, P t) be the trace of (p2, , P) onA-'i (N >D(t)).

We can write, for any x and M,

00

P tVMt) S X) E P2 Pt(V(t) :5 x, [Q(t) - " = Q)
k--o

Let

E (V(t) :5X) A(t) X

isA(t ir Q(-1+ vi

F ([ P Q(t) - ii A)

and let a(X , .. At n denote the sigma-f ield generated by random var-

ables x I x n Then on the set fA(t) i+k, D( i), for any

i, k > 0,

E C (t)- +11 ]+--k I

F C a(vO, ... , vi, u1, -- , Ui+k)

and

A i(vo , V u , u
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Therefore, P(EFIA) = P(E) P(FIA t), .e.

PfV(t) X) P A(t) x

Sk--o i=[A(t)-k]+

M{A(t)
_ E a v <_x Pt [Q(t)-l]+ = k

| k=o [i=[A(t)_k]

For any M, choose x sufficiently large so that for all k M,

i=[A(t)-k]+ i=[A(t)-Ml+

The choice of x is independent of t, because the last inequality

involves only at most m vi's, which are independent and identically

distributed. Thus we have

p fV(t) _ x) a e P ([Q(t) -1]+ - M)
t t

Since the left side goes to zero as t goes to infinity by Corollary

4.19, so does the right side. The theorem follows from the inequality

P(Q(t) _< MIN > A(t)) _ - p (Q(t) _< M].
P(Z>A(t)) t

Using essentially the same proof employed in (4.20) we have the

following generalization.
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(4.21) COROLLARY. For any M > 0 and 0 < t 1,

lim P(Q(ut) _< M I N > A(u)) = 0.

Our main object of interest is

Q (t) = Q(ut)0 t 1
a(Xu)

We are interested in the limiting behavior of (QuL > u). The next

lemma is helpful in establishing the convergence of the f.d.d.'s of

(QIL > x).

(4.22) LEMMA. For any e > 0 and 0 < t :l 1,

lim P VIut- -11 ~eL >u~ 0.

Proof. Set E(u) = (k 1 - X-l C) and F(u) its complement. Let

Pu(A) = P(AIN > A(u)) for A e(CN > A(u)) n Y and r P(N > A(u)). we

shall first consider

(4.23) :Q(ut) - X - 11 - e N > A(u).

Probability (4.23) is less thsn or equal to

PU V  -ut- > C, A(ut)CE(ut), D(ut)cE(ut), Q(ut) >_ M}

+ P(Q(ut) < M) + rlI[PA(ut)CF(ut)+P(Dt(ut)£F(ut)}]

I +J +K
u u u
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As u - co, K is asymptotically equal to

2uiP(A(ut) c F(ut)) <2~AU)-Xt 2 22Ct u2

which will converge to zero because the numerator is finite; see SMITH

(1958), pp. 248-249. Because of Corollary 4.21, Ju also converges to

zero. It remains to estimate I . Because of (4.15),

k11 (vi-

-< r 1  " p i= +2 I -
u u k,2EE(ut) k -

A(ut) = k, D(ut) = , N >

~Since
c A(ut) k k, D(ut) 2 N > 2 

* '", V2 ; U1 ' "'" U+l )

and
S(v.-X-l)

i=1+2 
> Eo((I k > 4EG- v1+2' ""vk"

the two events are independent. It follows

I. (vi-X-1)j

I r:1. P i=Z+2> E PfNDL, A(ut)=k, D(ut)=I)
k, E~ut) k-

By Chebyshev's irequality we have

-51-



~- 2

U 2
2 k,RcE(ut)

M k-eM

EI~vX-)2* PI N> nXe]

2
E2M r

Putting the estimates of IuJ and K together, and letting u go

to infinity in (4.23), we have

(V(ut) -E[ 'j (v 1-X- )2

lint sup P I -
uw U Q(ut) E 2M

Since M is arbitrary, we have

i V(ut) - X- 1  IN > A(u) 0lr P -

t1 c Q(ut)I =

Using the basic relation (4.4), we have the result.

(4.24) COROLLARY. For any e > 0 and 0 < t < ... < t k k 1,

ii go v(It>) 1  1 5 kIL> u 0

U Proof. Since
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P1 X-1>C 5i:

v(ut.) 1-X lI> 1ikL>uI

:S kP il > 6 ,> u
Q(ut

result follows immediately from Lemma 4.22.

Now, we are in the position to show the convergence of the f.d,d.'s

of (QulL > u).

(4.25) THEOREM. If p = 1, 0 < 2  and EuI+v ) < oo and if

0 < t1 < ... < tk S 1, then as u oo

(Qu (tl1), ... ) Q u(t k )L > u) => (W+(tl1))...,W+(t k)) .

Proof. First, suppose k = 1. We shall show that for any x > 0 and

O<t < 1,

Q(ut)
(4.26) lim P <Q: x I L > u = P[W+(t) Sx]

Let p (A)= P(AIL > u) for any A C [L > u] n 5. Then
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7171-1-w____ 
- ------

Q( Ut) f v(ut) V(ut)
Pu~ ) <~ UX7T~ Xx}

U{~~u)Ut - }t

+ p vu)- X-1j

because of Lemma 4.22. Since C is arbitrary

(4.7) ur sp Q(ut) ~ ip V(ut)+
(427 'im supu) j< im P(W+(t)5x).

On the other hand,

( at)(Xt Q(ut)

p < : 5 X) >

Again, because C is arbitrary,
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(4.28) urn inf P Q :ut X iim~ P < ut
u~c 7CO I I  vU- u7

Equality in (4.26) follows from (4.27) and (4.28).

Exactly the same argument can be employed to establish the result

for k > 1. This time we use Corollary 4.24 instead. And Theorem 4.25

follows.

In order to get the full weak convergence in D[O, 1], we need

to show that the family ((QuIL > u): u 2 0) is tight. To do so '

suffices to show that for any e > 0,

(4.29) lim ir (l, 0, 1) ? c I N > A(u) = 060 $ o u

see BILLINGSLEY (1968), Theorems 15.1 and 15.5 for this result.

The first step in demonstrating (4.29) is the next lemma.

(4.30) LEMMA. For every e > 0,

(4.31) lim lim r P sup 7>. N > A(T) = 0'T$o U-- 0 u 0:,:TC(X3u)j

On the set (N > A(uT)), (Q(u/5): 0 / 5- T -) is a stationary

process with independent increment. In fact, Q(uA5) = A(ub) - D'(u6),

0 h ! T, i.e., the difference of two standard renewal processes. Based

on this observation, the proof of Lemma 4.30 follows the argument of
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BELKIN (1972), p. 49, and will be omitted. Also see IGLEHART (1973),

pp. 19-24.

With this lemma in hand it is an easy matter to show

(4.32) THFOREM. If p = 1, 0 < 2 < co and EIu < cc, then

(QulL > u) >W, as u -co.

Proof. As remarked above, it suffices to show (4.29). For every T C(0,1],

C > 0 and 0 < 8 < T

(4.33) PQu( o, o,1) 1-} _: rCu p)Q(8,0,1) c 6, N > A(uT)

:< rul) I)-0'l>E sup Q(u,6) E , N>A(u-T)

+ t-1'U OS65 c( 3u)t

+ r P sup 3 E, N > A(uT)
U oS'r (T(x U)i

+
u u

Now, I is bounded above by

(4.34) r 1 PIOQ(5, T-5, 1) c, N > (E

i_ r P WQ(5 -, 1) 5, N >D(u(-))

On the set (A(u(--6))= k, D(u(T-6))= £), k > 1 > 0, we see that two

events
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(N > D(u(-)) E o(vO,...,vAl; u l , ... , uA)

S1k+l

are independent. Thus, (4.34) is further less than or equal to

PfN > D(u( -))j , ( , )

r Qu
u

P(N > D(u(T-5))l

r u

Since Qu =  f(B) and P(f(B) c C) = 1 where B is the standard

Brownian motion in [0, 1], it follows

(4.35) lrm l-- PoN ( 0, , 1) _> E) = 0;
&3-)O u-* u

see WHITT (1968), Theorem 8.11, for this result. Combining (4.31) - (4.35),

we obtain (4.29). This completes the proof.

4. A Single Server System With Several Initial Customers

In this section we shall consider a simple variation of the standard

GI/G/l queue with p = 1. We assume that at time 0, instead of one

initial customer, there are m (m > 1) initial customers. Thus our

queueing system is defined by the two sequences (u n 1) and (vn

n : - m + 1), where u represents the interarrival times between then

nth and (n+l)s t  customers, and v the service time of nth customer.
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Let Xn Vn - Un, n t 1. Form the random walk (S n O by

setting So = 0 and Sn = Xl + ... + X, n t 1. And define the other

quantities, e.g. N, L, Wn, W(t), accordingly. Then the next

theorem is an immediate result of Theorems 1.6 and 4.9.

(4.36) THEOREM. If p 1, 0 < 2 < o and E u ) < o, then

II

(4.37) (W [n.] N > n) = W + a s n --+ co

and

(4.38) U L. > )w, u

We observe that N represents the total number of customers

being served during the first period for which there are always at least

m customers in the system. The purpose of deriving (4.37) and (4.38)

is that these results will be helpful in establishing conditioned weak

limit theorems in multiple channel queueing systems. This is dealt with

in the next section.

5. Multiple Channel Queues With Identical Servers

In this section conditioned limit theorems for queues with traffic

intensity equal unity are extended to multiple channel queueing systems.

The systems are defined by two basic sequences of independent and identi-

cally distributed random variables (u n 1) and (v n - m + 1),
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where u represents the interarrival time between the nth and (n+l) st

n

customers, and v nthe service duration of nth customer. There are m

identical service channels and one initial customer for each service

channel. The queueing discipline is first come first served.

-I -1
Let E{ul) = \1 and E{v 1 ) = p . We assume that p = = 1.

Let A(t) be the arrival process associated with fUn n 1). We shall

define the gross input G(t) and net input I(t) of the systems as

follows: for t > 0

A(t)

G(t) E vn

n=-mi-l

I(t) = G(t) - mt

Let H(t) denote the total workload of the systems at time t..

Define the workload at time t in the jth channel, Hi(t), to be the

total work that is eventually done by server j in time t. So

H(t) = H (t) + -.. + H m(t), t _ 0.

If we define the virtual waiting time W(t) as

W(1) = min(H.(t): 1 : j -< m}, t _ 0,
!3

then W(t) represents the time that a hypothetical customer arriving at

time t would have 'u ait before being served by the first available

server. Define a SLopping time

L inf(t > 0: w(t) =0)~-59-



So before time L all the servers are busy.

For the moment consider a single server system A with m initial

customers. System A is described by the basic information ((v" u') =
n-i' n

n ! 1), where u' = U, V' = vn-m and the traffic intensity is unity.
nn n n-nrm

From a workload point of view, the multiple channel systems behave exactly

like system A on the set (L > u]. Based on this observation, we have

the following result by virtue of (4.38):

(4.39) >L)=,. WI

where c (u + _

117 m

On the set (L > u) for any i, j and 0 : t 1 1, H (ut) and1

H (ut) may differ at most by the service duration of one customer who

arrives before time u, that is to say, for 0 : t 1,

IH (ut) - H (ut)l _ maxvk: - m+l -5 k 5 At)

Following the argument used in proving (4.13), we see that for every

£ > 0,

' I lH.(u. H (u.)

(4.40) I u'

jfr -60-



Hence all processes

H H(u.)
-L I> . :5 i :5m

have the same weak limit, if there is one. But H(t) = H (t) + ... + H (t).
m

Using the triangular inequality, we have

( H(u.) H.(u.)' 1 l -/Hk(u-) H.(u')

(4.41) pk _d ~ 7 ,~

Combining (4.39)- (4.41), we obtain

(4.42) ( H(u.)> u W+ as u-
cm-lX)

for any j = 1, 2, ... , M.

Since W(t) = min(Hj(t): 1 < j : m), it is easy to see that

k=1

Combining (4.42) and (4.43) and appealing to Theorem 4.6, we establish

the following.

2 3
(4.44) THEOREM. If 0= = , 0 < <co and E, k < o, then

(W~u-) L \ >.4>-+ s-U 0
cm- 1 (x)/
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where

2 (v 1)I
c =[(u) + J

We shall complete this section with a weak limit theorem for the

process (W : n 1), the waiting time of nth customer. Note that W
n n

can be obtained by the random scaling

(4.45) Wn  t n )

where t u I + ... +u • Define

N = supn > O: w(/5) > 0 for all 5 - t n

where the supremum of the empty set is taken to be + co. Then we have

the following

(4.46) THEOREM. If p 1, 0 < 02 < oo and E( u1) < oo, then as

n -). 00,

Wn'( 2k 41 N>n) .

Proof. First we define a random change of time e byn

e GO = in(i 1) 0) , 0 S- I.

t

Then on the set E = 1 1, N > n)
n n
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W(nen(6)) = W[n, .

But W(,) S' + (t - 6) on the set E, where

n
Stn-- (vE - u'). Hence
n k=l k k

(4.47) W n.] S'A(nen(,6) +

cm-n n - cm- n U(/)

- M + ('6
- cm n

on the set E ,where

(4.48) (en I N> n) ==> 0

We can assume Efun = X- 1 < 1 (if this were not the case, a

linear rescaling of time will make k < 1). Using Chebyshev's inequality,

we can easily show that for 0 < A 1

(4.49 limP I 2 n '-I> 1 N > n}I = 0

Combining (4.37), (4.47) to (4.49), and Theorem 4.6, we prove the result.
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